Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Segmentation of large images based on super-pixels and community detection in graphs

Texto completo
Autor(es):
Linares, Oscar A. C. [1] ; Botelho, Glenda Michele [2] ; Rodrigues, Francisco Aparecido [1] ; Batista Neto, Joao [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Campus Sao Carlos, Caixa Postal 668, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Fed Tocantins, Palmas - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IET IMAGE PROCESSING; v. 11, n. 12, p. 1219-1228, DEC 2017.
Citações Web of Science: 5
Resumo

Image segmentation has many applications which range from machine learning to medical diagnosis. In this study, the authors propose a framework for the segmentation of images based on super-pixels and algorithms for community identification in graphs. The super-pixel pre-segmentation step reduces the number of nodes in the graph, rendering the method the ability to process large images. Moreover, community detection algorithms provide more accurate segmentation than traditional approaches based on spectral graph partition. The authors also compared their method with two algorithms: (i) the graph-based approach by Felzenszwalb and Huttenlocher and (ii) the contour-based method by Arbelaez. Results have shown that their method provides more precise segmentation and is faster than both of them. (AU)

Processo FAPESP: 11/05802-2 - Segmentação de imagens baseada em redes complexas e superpixels: uma aplicação ao censo de aves
Beneficiário:Glenda Michele Botelho
Modalidade de apoio: Bolsas no Brasil - Doutorado