Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Cellular automata rule characterization and classification using texture descriptors

Texto completo
Autor(es):
Machicao, Jeaneth [1] ; Ribas, Lucas C. [2] ; Scabini, Leonardo F. S. [1] ; Bruno, Odermir M. [1, 2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Carlos Inst Phys, Sci Comp Grp, POB 369, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Sao Paulo, Inst Math & Comp Sci, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS; v. 497, p. 109-117, MAY 1 2018.
Citações Web of Science: 2
Resumo

The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale. (C) 2017 Published by Elsevier B.V. (AU)

Processo FAPESP: 16/23763-8 - Modelagem e análise de redes complexas para visão computacional
Beneficiário:Lucas Correia Ribas
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 14/08026-1 - Visão artificial e reconhecimento de padrões aplicados em plasticidade vegetal
Beneficiário:Odemir Martinez Bruno
Modalidade de apoio: Auxílio à Pesquisa - Regular