Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Imputing missing data in non-renewable empower time series from night-time lights observations

Texto completo
Autor(es):
Neri, Laura [1] ; Coscieme, Luca [2] ; Giannetti, Biagio F. [2, 3] ; Pulselli, Federico M. [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Siena, Dept Econ & Stat, Piazza San Francesco 7, I-53100 Siena - Italy
[2] Univ Paulista, Postgrad Program Prod Engn, Rua Doutor Bacelar 1212, BR-04026002 Sao Paulo - Brazil
[3] Beijing Normal Univ, State Key Joint Lab Environm Simulat & Pollut Con, Sch Environm, Beijing 100875 - Peoples R China
[4] Univ Siena, Ecodynam Grp, Dept Earth Environm & Phys Sci, Pian Mantellini 44, I-53100 Siena - Italy
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: ECOLOGICAL INDICATORS; v. 84, p. 106-118, JAN 2018.
Citações Web of Science: 2
Resumo

Emergy is an environmental accounting tool, with a specific set of indicators, that proved to be highly informative for sustainability assessment of national economies. The empower, defined as emergy per unit time, is a measure of the overall flow of resources used by a system in order to support its functioning. Continuous time-series of empower are not available for most of the world countries, due to the large amount of data needed for its calculation year by year. In this paper, we aim at filling this gap by means of a model that facilitates reconstruction of continuous time series of the non-renewable component of empower for a set of 57 countries of the world from 1995 to 2012. The reconstruction is based on a 3 year global emergy dataset and on the acknowledged relationships between the use of non-renewables, satellite observed artificial lights emitted at night, and Gross Domestic Product. Results show that this method provides accurate estimations of non-renewable empower at the country scale. The estimation model can be extended onward and backward in time and replicated for more countries, also using higher-resolution satellite imageries newly available. Besides representing an important advancement in emergy theory, this information is helpful for monitoring progresses toward Sustainable Development and energy use international goals. (AU)

Processo FAPESP: 16/07931-8 - Contabilidade e mapeamento da contribuição do capital natural para processos de produção econômica nos estados do Brasil
Beneficiário:Luca Coscieme
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado