Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

CENTRAL LIMIT THEOREM FOR THE MODULUS OF CONTINUITY OF AVERAGES OF OBSERVABLES ON TRANSVERSAL FAMILIES OF PIECEWISE EXPANDING UNIMODAL MAPS

Texto completo
Autor(es):
De Lima, Amanda [1] ; Smania, Daniel [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, ICMC, Dept Matemat, Caixa Postal 668, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU; v. 17, n. 3, p. 673-733, JUN 2018.
Citações Web of Science: 1
Resumo

Consider a C-2 family of mixing C-4 piecewise expanding unimodal maps t is an element of {[}a, b] bar right arrow f(t), with a critical point c, that is transversal to the topological classes of such maps. Given a Lipchitz observable consider the function R-phi(t) = integral phi d mu(t), where mu(t) is the unique absolutely continuous invariant probability of f(t). Suppose that sigma(t) > 0 for every t is an element of {[}a, b], where sigma(2)(t) = sigma(2)(t)(phi) = lim(n ->infinity) integral (Sigma(n-1)(j=0) (phi o f(t)(j) - integral phi d mu(t))/root n)(2) d mu(t). We show that m [ t is an element of{[}a, b]: t + h is an element of {[}a, b] and 1/psi(t)root-log vertical bar h vertical bar (R-phi(t + h) - R-phi(t)/h) <= y ] converges to 1/root 2 pi integral(y)(-infinity) e(-s2/2) ds, where psi(t) is a dynamically defined function and m is the Lebesgue measure on {[}a, b], normalized in such way that m({[}a, b]) = 1. As a consequence, we show that R-phi is not a Lipchitz function on any subset of {[}a, b] with positive Lebesgue measure. (AU)

Processo FAPESP: 10/17419-6 - Famílias transversais de transformações expansoras por pedaços
Beneficiário:Amanda de Lima
Modalidade de apoio: Bolsas no Brasil - Doutorado