Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo - Brazil
Número total de Afiliações: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Algebra; v. 495, p. 233-263, FEB 1 2018. |
Citações Web of Science: | 0 |
Resumo | |
In {[}19] authors described some properties about commutative power associative nilalgebras of nilindex 5. Here we will get new results about the structure of this class of algebras. Those results will allow us to prove that every commutative power associative algebra of dimension 9 and nilindex 5 over a field of characteristic different from 2, 3 and 5 is solvable. Consequently the famous Albert's conjecture ({[}1], Problem 1.1) is setted for dimension <= 9 and characteristic 0 since the case of dimension 9 and nilindex not equal 5 have already been examined in {[}27], {[}11], {[}14] and {[}20]. (C) 2017 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 14/09310-5 - Estruturas algébricas e suas representações |
Beneficiário: | Vyacheslav Futorny |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |