Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

The role of location and social strength for friendship prediction in location-based social networks

Texto completo
Autor(es):
Valverde-Rebaza, Jorge C. [1] ; Roche, Mathieu [2, 3] ; Poncelet, Pascal [4] ; Lopes, Alneu de Andrade [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, ICMC, Dept Comp Sci, CP 668, BR-13560970 Sao Carlos, SP - Brazil
[2] TETIS, CIRAD, F-34398 Montpellier - France
[3] Univ Montpellier, AgroParisTech, Cirad, TETIS, CNRS, Irstea, Montpellier - France
[4] Univ Montpellier, LIRMM, 860 Rue St Priest, F-34095 Montpellier - France
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: INFORMATION PROCESSING & MANAGEMENT; v. 54, n. 4, p. 475-489, JUL 2018.
Citações Web of Science: 7
Resumo

Recent advances in data mining and machine learning techniques are focused on exploiting location data. These advances, combined with the increased availability of location-acquisition technology, have encouraged social networking services to offer to their users different ways to share their location information. These social networks, called location-based social networks (LBSNs), have attracted millions of users and the attention of the research community. One fundamental task in the LBSN context is the friendship prediction due to its role in different applications such as recommendation systems. In the literature exists a variety of friendship prediction methods for LBSNs, but most of them give more importance to the location information of users and disregard the strength of relationships existing between these users. The contributions of this article are threefold, we: 1) carried out a comprehensive survey of methods for friendship prediction in LBSNs and proposed a taxonomy to organize the existing methods; 2) put forward a proposal of five new methods addressing gaps identified in our survey while striving to find a balance between optimizing computational resources and improving the predictive power; and 3) used a comprehensive evaluation to quantify the prediction abilities of ten current methods and our five proposals and selected the top-5 friendship prediction methods for LBSNs. We thus present a general panorama of friendship prediction task in the LBSN domain with balanced depth so as to facilitate research and real-world application design regarding this important issue. (AU)

Processo FAPESP: 13/12191-5 - Mineração do Comportamento de Usuários em Redes Sociais baseadas em Localização
Beneficiário:Jorge Carlos Valverde Rebaza
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 15/14228-9 - Análise e Mineração de Redes Sociais
Beneficiário:Alneu de Andrade Lopes
Modalidade de apoio: Auxílio à Pesquisa - Regular