| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] Univ Estadual Campinas, Dept Stat, Campinas, SP - Brazil
[2] Univ Fed Pernambuco, Dept Stat, Recife, PE - Brazil
[3] Univ Connecticut, Dept Stat, Storrs, CT 06269 - USA
Número total de Afiliações: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Journal of Applied Statistics; v. 45, n. 11, p. 2039-2066, 2018. |
| Citações Web of Science: | 1 |
| Resumo | |
In many studies, the data collected are subject to some upper and lower detection limits. Hence, the responses are either left or right censored. A complication arises when these continuous measures present heavy tails and asymmetrical behavior; simultaneously. For such data structures, we propose a robust-censored linear model based on the scale mixtures of skew-normal (SMSN) distributions. The SMSN is an attractive class of asymmetrical heavy-tailed densities that includes the skew-normal, skew-t, skew-slash, skew-contaminated normal and the entire family of scale mixtures of normal (SMN) distributions as special cases. We propose a fast estimation procedure to obtain the maximum likelihood (ML) estimates of the parameters, using a stochastic approximation of the EM (SAEM) algorithm. This approach allows us to estimate the parameters of interest easily and quickly, obtaining as a byproducts the standard errors, predictions of unobservable values of the response and the log-likelihood function. The proposed methods are illustrated through real data applications and several simulation studies. (AU) | |
| Processo FAPESP: | 13/21468-0 - Modelos com erros nas variáveis para dados censurados usando distribuições de misturas da escala skew-normal |
| Beneficiário: | Aldo William Medina Garay |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |