Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On efficient reconstruction of boundary data with optimal placement of the source points in the MFS: application to inverse Stefan problems

Texto completo
Autor(es):
Reddy, G. M. M. [1] ; Vynnycky, M. [2] ; Cuminato, J. A. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo Sao Carlos, Inst Math & Comp Sci, Dept Appl Math & Stat, Sao Carlos, SP - Brazil
[2] Royal Inst Technol KTH, Dept Mat Sci & Engn, Stockholm - Sweden
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Inverse Problems in Science and Engineering; v. 26, n. 9, p. 1249-1279, 2018.
Citações Web of Science: 1
Resumo

Current practice in the use of the method of fundamental solutions (MFS) for inverse Stefan problems typically involves setting the source and collocation points at some distance, h, from the boundaries of the domain in which the solution is required, and then varying their number, N, so that the obtained solution fulfils a desired tolerance, Tol, when a random noise level d is added to the boundary conditions. This leads to an open question: can h andN be chosen simultaneously so that N is minimized, thereby leading to a lower computational expense in the solution of the inverse problem? Here, we develop a novel, simple and practical algorithm to help answer this question. The algorithm is used to study the effect of Tol and d on both h andN. Its effectiveness is shown through three test problems and numerical experiments show promising results: for example, even with d as high as 5% and Tol as low as 10-3, we are able to find satisfactory solutions for N as low as 8. (AU)

Processo FAPESP: 16/19648-9 - Solução numérica do problema de Stefan inverso pelo método das soluções fundamentais
Beneficiário:Gujji Murali Mohan Reddy
Linha de fomento: Bolsas no Brasil - Pós-Doutorado