| Texto completo | |
| Autor(es): |
Cozman, Fabio Gagliardi
Número total de Autores: 1
|
| Tipo de documento: | Artigo Científico |
| Fonte: | INTERNATIONAL JOURNAL OF APPROXIMATE REASONING; v. 103, p. 124-138, DEC 2018. |
| Citações Web of Science: | 0 |
| Resumo | |
An evenly convex credal set is a set of probability measures that is evenly convex; that is, a set that is an arbitrary intersection of open halfspaces. An evenly convex credal set can for instance encode preference judgments through strict and non-strict inequalities such as P(A) > 1/2 and P(A) <= 2/3. This paper presents an axiomatization of evenly convex sets from preferences, where we introduce a new (and very weak) Archimedean condition. We examine the duality between preference orderings and credal sets; we also consider assessments of almost preference and natural extensions. We then discuss regular conditioning, a concept that is closely related to evenly convex sets. (C) 2018 Elsevier Inc. All rights reserved. (AU) | |
| Processo FAPESP: | 16/18841-0 - Algoritmos para inferência e aprendizado de programas lógicos probabilísticos |
| Beneficiário: | Fabio Gagliardi Cozman |
| Modalidade de apoio: | Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE |
| Processo FAPESP: | 15/21880-4 - PROVERBS -- Sistemas Booleanos Probabilísticos Super-restritos: ferramentas de raciocínio e aplicações |
| Beneficiário: | Marcelo Finger |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |