Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Speech Quality Assessment in Wireless VoIP Communication Using Deep Belief Network

Texto completo
Autor(es):
Affonso, Emmanuel T. [1] ; Nunes, Rodrigo D. [1] ; Rosa, Renata L. [1] ; Pivaro, Gabriel F. [2] ; Rodriguez, Demostenes Z. [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Fed Lavras, BR-37200000 Lavras - Brazil
[2] Natl Inst Telecommun, Radiocommun Reference Ctr, Santa Rita Do Sapucai, MG - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IEEE ACCESS; v. 6, p. 77022-77032, 2018.
Citações Web of Science: 0
Resumo

Nowadays, the voice over Internet protocol (VoIP) communication service is widely adopted, and it counts with many users across the world. However, the users' quality of experience is not guaranteed because the voice signal quality can be affected by several degradations that happen in the network infrastructure. Thus, it is relevant to have a global speech quality assessment method that considers both wired and wireless networks to provide reliable results. In this paper, several network scenarios that consider different packet loss rates (PLRs) and wireless channel models are implemented in which the impaired signals are evaluated using the algorithm described in ITU-T Recommendation P.862. Preliminary results showed a relationship between both fading and PLR parameters and the global speech quality index. However, the P.862 algorithm is not viable in real VoIP scenarios. The ITU-T Recommendation P.563 describes a non-intrusive speech quality assessment method; nevertheless, its results are not confident. In this context, the main objective of this paper is to propose a non-intrusive speech quality classification model based on a deep belief network (DBN) that considers the wired and wireless impairments on the speech signal. Experimental results demonstrated a high correlation between the proposed model based on the DBN and P.862 algorithm, reaching a F-measure of 97.01%. For validation, the non-intrusive P.563 algorithm is used; the proposed model and P.563 reached an average accuracy of 96.14% and 72.12%, respectively. Furthermore, subjective tests were carried out, and the proposed DBN model reached an accuracy of 94%. (AU)

Processo FAPESP: 15/24496-0 - Avaliação do serviço das operadoras de comunicações utilizando o índice de qualidade de voz
Beneficiário:Demostenes Zegarra Rodriguez
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/25512-0 - Análise Condicional para Codificação e Reconhecimento de Sinais de Áudio e Voz
Beneficiário:Miguel Arjona Ramírez
Modalidade de apoio: Auxílio à Pesquisa - Regular