Busca avançada
Ano de início
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Detection of time reversibility in time series by ordinal patterns analysis

Texto completo
Martinez, J. H. [1] ; Herrera-Diestra, J. L. [2] ; Chavez, M. [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Sorbonne Univ, INSERM, UM1127, Inst Cerveau & Moelle Epiniere, F-75013 Paris - France
[2] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, IFT, BR-01140070 Sao Paulo - Brazil
[3] Hop La Pitie Salpetriere, CNRS, UMR7225, F-75013 Paris - France
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Chaos; v. 28, n. 12 DEC 2018.
Citações Web of Science: 0

Time irreversibility is a common signature of nonlinear processes and a fundamental property of non-equilibrium systems driven by non-conservative forces. A time series is said to be reversible if its statistical properties are invariant regardless of the direction of time. Here, we propose the Time Reversibility from Ordinal Patterns method (TiROP) to assess time-reversibility from an observed finite time series. TiROP captures the information of scalar observations in time forward as well as its time-reversed counterpart by means of ordinal patterns. The method compares both underlying information contents by quantifying its (dis)-similarity via the Jensen-Shannon divergence. The statistic is contrasted with a population of divergences coming from a set of surrogates to unveil the temporal nature and its involved time scales. We tested TiROP in different synthetic and real, linear, and non-linear time series, juxtaposed with results from the classical Ramsey's time reversibility test. Our results depict a novel, fast-computation, and fully data-driven methodology to assess time-reversibility with no further assumptions over data. This approach adds new insights into the current non-linear analysis techniques and also could shed light on determining new physiological biomarkers of high reliability and computational efficiency. Published by AIP Publishing. (AU)

Processo FAPESP: 17/00344-2 - Aproximação de redes complexas para análise de séries temporais
Beneficiário:Jose Luis Herrera Diestra
Linha de fomento: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 16/01343-7 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para física teórica
Beneficiário:Nathan Jacob Berkovits
Linha de fomento: Auxílio à Pesquisa - Temático