Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Artificial Intelligence-Based Grading Quality of Bovine Blastocyst Digital Images: Direct Capture with Juxtaposed Lenses of Smartphone Camera and Stereomicroscope Ocular Lens

Texto completo
Autor(es):
Gouveia Nogueira, Marcelo Fibio [1, 2] ; Guilherme, Vitria Bertogna [1] ; Pronunciate, Micheli [1, 2] ; dos Santos, Priscila Helena [1, 2] ; Bezerra da Silva, Diogo Lima [3] ; Rocha, Jos Celso [3]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ UNESP, Sch Sci & Languages, Dept Biol Sci, Lab Embryon Micromanipulat, BR-19806900 Assis, SP - Brazil
[2] Sao Paulo State Univ UNESP, Biosci Inst, Dept Pharmacol, Multiuser Facil FitoFarmaTec, BR-18618689 Botucatu, SP - Brazil
[3] Sao Paulo State Univ UNESP, Sch Sci & Languages, Dept Biol Sci, Lab Appl Math, BR-19806900 Assis, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: SENSORS; v. 18, n. 12 DEC 2018.
Citações Web of Science: 0
Resumo

In this study, we developed an online graphical and intuitive interface connected to a server aiming to facilitate professional access worldwide to those facing problems with bovine blastocysts classification. The interface Blasto3Q, where 3Q refers to the three qualities of the blastocyst grading, contains a description of 24 variables that were extracted from the image of the blastocyst and analyzed by three Artificial Neural Networks (ANNs) that classify the same loaded image. The same embryo (i.e., the biological specimen) was submitted to digital image capture by the control group (inverted microscope with 40 x magnification) and the experimental group (stereomicroscope with maximum of magnification plus 4 x zoom from the cell phone camera). The images obtained from the control and experimental groups were uploaded on Blasto3Q. Each image from both sources was evaluated for segmentation and submitted (only if it could be properly or partially segmented) for automatic quality grade classification by the three ANNs of the Blasto3Q program. Adjustments on the software program through the use of scaling algorithm software were performed to ensure the proper search and segmentation of the embryo in the raw images when they were captured by the smartphone, since this source produced small embryo images compared with those from the inverted microscope. With this new program, 77.8% of the images from smartphones were successfully segmented and from those, 85.7% were evaluated by the Blasto3Q in agreement with the control group. (AU)

Processo FAPESP: 17/19323-5 - Classificação de embriões humanos mediante as técnicas de time-lapse, processamento de imagens digitais e inteligência artificial
Beneficiário:José Celso Rocha
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 12/50533-2 - GIFT: melhoramento genômico de características relacionadas com a fertilização em gado bovino dinamarquês e brasileiro
Beneficiário:Marcelo Fábio Gouveia Nogueira
Modalidade de apoio: Auxílio à Pesquisa - Temático