Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A BIC-based consistent metric between Markovian processes

Texto completo
Autor(es):
Garcia, Jesus E. [1] ; Gholizadeh, R. [1] ; Gonzalez-Lopez, V. A. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Dept Stat, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY; v. 34, n. 6, p. 868-878, NOV-DEC 2018.
Citações Web of Science: 1
Resumo

In this paper, we address the problem of deciding if two independent samples coming from discrete Markovian processes are governed by the same stochastic law. We establish a local metric between samples based on the Bayesian information criterion. In addition, we derive the bound that must be used in this metric to take the decision. In the case on which is decided that the laws are not the same, the metric allows to detect the specific elements of the state space where the discrepancies are manifested. We prove that the metric is statistically consistent to detect if the samples follow the same law, tending to zero when the sample sizes increase. Moreover, we show that the metric assumes arbitrarily large values when the sample sizes increase and the stochastic laws are different. This concept is applied to analyze two lines of production of alcohol fuel, described by five variables each. We identify the variables that most contribute to the discrepancy and, using the local nature of the metric, we list the realizations in which the processes behave differently. (AU)

Processo FAPESP: 17/12943-8 - O déficit da inibição como marcador de neuroplasticidade na reabilitação
Beneficiário:Felipe Fregni
Modalidade de apoio: Auxílio à Pesquisa - Programa SPEC