Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Dressing Tool Condition Monitoring through Impedance-Based Sensors: Part 2-Neural Networks and K-Nearest Neighbor Classifier Approach

Texto completo
Autor(es):
Junior, Pedro [1] ; D'Addona, Doriana M. [2] ; Aguiar, Paulo [1] ; Teti, Roberto [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Paulista, UNESP, Fac Engn, Dept Engn Eltr, Av Engn Luiz Edmundo C Coube 14-01, BR-17033360 Bauru, SP - Brazil
[2] Univ Napoli Federico II, Dipartimento Ingn Chim, Mat & Prod Ind, I-80138 Naples, NA - Italy
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: SENSORS; v. 18, n. 12 DEC 2018.
Citações Web of Science: 4
Resumo

This paper presents an approach for impedance-based sensor monitoring of dressing tool condition in grinding by using the electromechanical impedance (EMI) technique. This method was introduced in Part 1 of this work and the purpose of this paper (Part 2) is to achieve an optimal selection of the excitation frequency band based on multi-layer neural networks (MLNN) and k-nearest neighbor classifier (k-NN). The proposed approach was validated on the basis of dressing tool condition information obtained from the monitoring of experimental dressing tests with two industrial stationary single-point dressing tools. Moreover, representative damage indices for diverse damage cases, obtained from impedance signatures at different frequency bands, were taken into account for MLNN data processing. The intelligent system was able to select the most damage-sensitive features based on optimal frequency band. The best models showed a general overall error lower than 2%, thus robustly contributing to the efficient automation of grinding and dressing operations. The promising results of this study foster the EMI-based sensor monitoring approach to fault diagnosis in dressing operations and its effective implementation for industrial grinding process automation. (AU)

Processo FAPESP: 17/16921-9 - Uma nova abordagem para o monitoramento da operação de dressagem baseado na impedância eletromecânica usando inteligência computacional
Beneficiário:Pedro de Oliveira Conceição Junior
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 16/02831-5 - Sistemas de monitoramento da integridade estrutural de dressadores baseado no método da impedância eletromecânica
Beneficiário:Pedro de Oliveira Conceição Junior
Modalidade de apoio: Bolsas no Brasil - Doutorado