Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

On the approximate reanalysis technique in topology optimization

Texto completo
Autor(es):
Senne, Thadeu A. [1] ; Gomes, Francisco A. M. [2] ; Santos, Sandra A. [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Sao Paulo, Inst Sci & Technol, Ave Cesare Mansueto Giulio Lattes 1201, BR-12247014 Sao Jose Dos Campos - Brazil
[2] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: OPTIMIZATION AND ENGINEERING; v. 20, n. 1, p. 251-275, MAR 2019.
Citações Web of Science: 1
Resumo

A classical problem in topology optimization concerns the minimization of the compliance of a static structure, subject to a volume constraint upon the available material. Assuming that the structure is under small displacements and it is composed of a linear elastic material, the evaluation of the objective function demands the solution of a linear system. Hence, within the computational optimization process of addressing topology optimization problems, the cost of evaluating the objective function may be an issue, especially as the discretized mesh is refined. This work pursues the approximate reanalysis technique in combination with the Sequential Piecewise Linear Programming method for obtaining optimized structures. Numerical evidences are presented to corroborate the usage of this blend in a study composed by three distinct strategies in three benchmark test problems. A further analysis has been performed concerning the impact of the computation of the gradient vector of the objective function, pointing out room for additional savings. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 13/05475-7 - Métodos computacionais de otimização
Beneficiário:Sandra Augusta Santos
Modalidade de apoio: Auxílio à Pesquisa - Temático