Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Adapted splittings for pairs (G, W)

Texto completo
Autor(es):
Carreira Andrade, Maria Gorete [1] ; Campello Fanti, Erminia de Lourdes [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ, UNESP, IBILCE, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Topology and its Applications; v. 253, p. 17-24, FEB 15 2019.
Citações Web of Science: 0
Resumo

Let G be a group, W a G-set with {[}G : G(w)] = infinity, for all w is an element of W, where G(w) denotes the point stabilizer of w is an element of W. Considering the restriction map res(W)(G) : H-1 (G, Z(2)G) -> Pi(w is an element of E) H-1 (G(w), Z(2)G), where E is a set of orbit representatives for the w E E G -action in W, we define an algebraic invariant denoted by (E) over bar (G, W). In this paper, by using the relation of this invariant with the end e(G) defined by Freudenthal-Hopf-Specker and a Swarup's Theorem about splittings of groups adapted to a family of subgroups, we show, for G finitely generated and W a G -set which falls into many finitely G -orbits, that (G, W) is adapted if, and only if, (E) over bar (G, W) >= 2. (C) 2018 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 12/24454-8 - Topologia algébrica, geométrica e diferencial
Beneficiário:Daciberg Lima Gonçalves
Modalidade de apoio: Auxílio à Pesquisa - Temático