Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Ensemble of Multi-View Learning Classifiers for Cross-Domain Iris Presentation Attack Detection

Texto completo
Autor(es):
Kuehlkamp, Andrey [1] ; Pinto, Allan [2] ; Rocha, Anderson [2] ; Bowyer, Kevin W. [1] ; Czajka, Adam [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 - USA
[2] Univ Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Information Forensics and Security; v. 14, n. 6, p. 1419-1431, JUN 2019.
Citações Web of Science: 4
Resumo

The adoption of large-scale iris recognition systems around the world has brought to light the importance of detecting presentation attack images (textured contact lenses and printouts). This paper presents a new approach in iris presentation attack detection (PAD) by exploring combinations of convolutional neural networks (CNNs) and transformed input spaces through binarized statistical image features (BSIFs). Our method combines lightweight CNNs to classify multiple BSIF views of the input image. Following explorations on complementary input spaces leading to more discriminative features to detect presentation attacks, we also propose an algorithm to select the best (and most discriminative) predictors for the task at hand. An ensemble of predictors makes use of their expected individual performances to aggregate their results into a final prediction. Results show that this technique improves on the current state of the art in iris PAD, outperforming the winner of LivDet-Iris 2017 competition both for intra-and cross-dataset scenarios, and illustrating the very difficult nature of the cross-dataset scenario. (AU)

Processo FAPESP: 17/12646-3 - Déjà vu: coerência temporal, espacial e de caracterização de dados heterogêneos para análise e interpretação de integridade
Beneficiário:Anderson de Rezende Rocha
Modalidade de apoio: Auxílio à Pesquisa - Temático