| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Dept Math, Sao Paulo - Brazil
[2] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 - USA
[3] Univ Colorado, Dept Math, Boulder, CO 80309 - USA
[4] Inst Math, Kiev - Ukraine
Número total de Afiliações: 4
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Linear Algebra and its Applications; v. 566, p. 212-244, APR 1 2019. |
| Citações Web of Science: | 1 |
| Resumo | |
In representation theory, a classification problem is called wild if it contains the problem of classifying matrix pairs up to simultaneous similarity. The latter problem is considered hopeless; it contains the problem of classifying an arbitrary finite system of vector spaces and linear mappings between them. We prove that an analogous ``universal{''} problem in the theory of tensors of order at most 3 over an arbitrary field is the problem of classifying three-dimensional arrays up to equivalence transformations {[}a(ijk)](i=1)(m) (n)(j=1) (t)(k=1) bar right arrow {[}Sigma(i,j,k) a(ijk) u(ii') v(jj') w(kk')](i'=1)(m) (n)(j'=1) (t)(k'=1) in which {[}u(ii')], {[}v(jj')], {[}w(kk')] are nonsingular matrices: this problem contains the problem of classifying an arbitrary system of tensors of order at most three. (C) 2018 Elsevier Inc. All rights reserved. (AU) | |
| Processo FAPESP: | 14/09310-5 - Estruturas algébricas e suas representações |
| Beneficiário: | Vyacheslav Futorny |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 15/05864-9 - Problemas de classificação em álgebra linear e teoria de sistemas |
| Beneficiário: | Vyacheslav Futorny |
| Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |