Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A Relaxation Projection Analytical-Numerical Approach in Hysteretic Two-Phase Flows in Porous Media

Texto completo
Autor(es):
Abreu, Eduardo [1] ; Bustos, Abel [2] ; Ferraz, Paola [1] ; Lambert, Wanderson [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, BR-13083970 Campinas, SP - Brazil
[2] Pontificia Univ Javeriana Cali, 118-250 Ave Canasgordas, Cali - Colombia
[3] Alfenas Fed Univ, ICT MG Rod BR 267, Km 533, Alfenas - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF SCIENTIFIC COMPUTING; v. 79, n. 3, p. 1936-1980, JUN 2019.
Citações Web of Science: 0
Resumo

Hysteresis phenomenon plays an important role in fluid flow through porous media and exhibits convoluted behavior that are often poorly understood and that is lacking of rigorous mathematical analysis. We propose a twofold approach, by analysis and computing to deal with hysteretic, two-phase flows in porous media. First, we introduce a new analytical projection method for construction of the wave sequence in the Riemann problem for the system of equations for a prototype two-phase flow model via relaxation. Second, a new computational method is formally developed to corroborate our analysis along with a representative set of numerical experiments to improve the understanding of the fundamental relaxation modeling of hysteresis for two-phase flows. Using the projection method we show the existence by analytical construction of the solution. The proposed computational method is based on combining locally conservative hybrid finite element method and finite volume discretizations within an operator splitting formulation to address effectively the stiff relaxation hysteretic system modeling fundamental two-phase flows in porous media. (AU)

Processo FAPESP: 16/23374-1 - Leis de conservação, leis de equilíbrio e EDPs relacionadas com fluxos descontínuos e não-locais em ciências aplicadas: análise numérica, teoria e aplicações
Beneficiário:Eduardo Cardoso de Abreu
Modalidade de apoio: Auxílio à Pesquisa - Regular