Supervised and unsupervised relevance sampling in ... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Supervised and unsupervised relevance sampling in handcrafted and deep learning features obtained from image collections

Texto completo
Autor(es):
Ponti, Moacir A. [1] ; da Costa, Gabriel B. Paranhos [1] ; Santos, Fernando P. [1] ; Silveira, Kaue U. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, ICMC, BR-13566590 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: APPLIED SOFT COMPUTING; v. 80, p. 414-424, JUL 2019.
Citações Web of Science: 0
Resumo

Image collections are currently widely available and are being generated in a fast pace due to mobile and accessible equipment. In principle, that is a good scenario taking into account the design of successful visual pattern recognition systems. However, in particular for classification tasks, one may need to choose which examples are more relevant in order to build a training set that well represents the data, since they often require representative and sufficient observations to be accurate. In this paper we investigated three methods for selecting relevant examples from image collections based on learning models from small portions of the available data. We considered supervised methods that need labels to allow selection, and an unsupervised method that is agnostic to labels. The image datasets studied were described using both handcrafted and deep learning features. A general purpose algorithm is proposed which uses learning methods as subroutines. We show that our relevance selection algorithm outperforms random selection, in particular when using unlabelled data in an unsupervised approach, significantly reducing the size of the training set with little decrease in the test accuracy. (AU)

Processo FAPESP: 16/16111-4 - Aprendizado de características na recuperação de imagens baseada em rascunhos e no sensoriamento remoto de baixa altitude
Beneficiário:Moacir Antonelli Ponti
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 15/05310-3 - Aprendizado de características espaço-temporais em vídeos
Beneficiário:Gabriel de Barros Paranhos da Costa
Modalidade de apoio: Bolsas no Brasil - Doutorado