| Texto completo | |
| Autor(es): |
Fontes, Luiz Renato G.
[1]
;
Marchetti, Domingos H. U.
[2]
;
Mountford, Thomas S.
[3]
;
Vares, Maria Eulalia
[4]
Número total de Autores: 4
|
| Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, SP - Brazil
[2] Univ Sao Paulo, Inst Fis, Sao Paulo, SP - Brazil
[3] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne - Switzerland
[4] Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, RJ - Brazil
Número total de Afiliações: 4
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Stochastic Processes and their Applications; v. 129, n. 8, p. 2903-2911, AUG 2019. |
| Citações Web of Science: | 2 |
| Resumo | |
We investigate a non-Markovian analogue of the Harris contact process in Z(d): an individual is attached to each site x is an element of Z(d), and it can be infected or healthy; the infection propagates to healthy neighbours just as in the usual contact process, according to independent exponential times with a fixed rate lambda; nevertheless, the possible recovery times for an individual are given by the points of a renewal process with heavy tail; the renewal processes are assumed to be independent for different sites. We show that the resulting processes have a critical value equal to zero. (C) 2018 Elsevier B.V. All rights reserved. (AU) | |
| Processo FAPESP: | 17/10555-0 - Modelagem estocástica de sistemas interagentes |
| Beneficiário: | Fabio Prates Machado |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |