Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Comparison of rapid techniques for classification of ground meat

Texto completo
Autor(es):
Nolasco-Perez, Irene M. [1] ; Rocco, Luiz A. C. M. [1] ; Cruz-Tirado, Jam P. [1] ; Pollonio, Marise A. R. [1] ; Barbon, Jr., Syluio [2] ; Barbon, Ana Paula A. C. [3] ; Barbin, Douglas F. [1]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Campinas Unicamp, Dept Food Engn, Campinas, SP - Brazil
[2] Londrina State Univ UEL, Dept Comp Sci, Londrina - Brazil
[3] Londrina State Univ UEL, Dept Zootechnol, Londrina - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: BIOSYSTEMS ENGINEERING; v. 183, p. 151-159, JUL 2019.
Citações Web of Science: 0
Resumo

Computer vision and near infrared spectroscopy are fast and non-invasive techniques currently available for processing control in the meat industry. These techniques can be used, either separately or combined, for on-line assessment of meat quality parameters. This study aimed to compare a portable near-infrared (NIR) spectrometer, near infrared hyperspectral imaging (NIR-HSI) and red, green and blue imaging (RGB-I) to differentiate ground samples from beef, pork and chicken meat; and to quantify amounts of each in mixtures. Chicken breast meat was adulterated with either pork leg meat or beef round meat from 0 to 50% (w/w). Partial Least Squares regression (PLSR) models were performed using full spectra and after selecting most important wavelengths. The best results were obtained with NIR-HSI, with coefficient of prediction (R-p(2)) of 0.83 and 0.94, ratio performance to deviation (RPD) of 1.96 and 3.56, and ratio of error range (RER) of 10.0 and 18.1, for samples of chicken adulterated with pork and beef, respectively. In addition, the results obtained using NIR spectroscopy and RGB-I confirm that these techniques provide an alternative for rapid, on-line inspection of ground meat in the food industry. (C) 2019 IAgrE. Published by Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 14/50951-4 - INCT 2014: Tecnologias Analíticas Avançadas
Beneficiário:Celio Pasquini
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 08/57808-1 - Instituto Nacional de Ciências e Tecnologias Analíticas Avançadas - INCTAA
Beneficiário:Celio Pasquini
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/24351-2 - Análise de imagens e espectroscopia de infravermelho próximo (NIR) na avaliação de qualidade e autenticação de alimentos
Beneficiário:Douglas Fernandes Barbin
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores