Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Balanced internal hydration discriminates substrate binding to respiratory complex I

Texto completo
Autor(es):
Teixeira, Murilo Hoias [1] ; Arantes, Guilherme Menegon [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Quim, Dept Biochem, Av Prof Lineu Prestes 748, BR-05508900 Sao Paulo, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS; v. 1860, n. 7, p. 541-548, JUL 1 2019.
Citações Web of Science: 0
Resumo

Molecular recognition of the amphiphilic electron carrier ubiquinone (Q) by respiratory complexes is a fundamental part of electron transfer chains in mitochondria and bacteria. The primary respiratory complex I binds Q in a long and narrow protein chamber to catalyse its reduction. But, the binding mechanism and the role of chamber hydration in substrate selectivity and stability are unclear. Here, large-scale atomistic molecular dynamics simulations and estimated free energy profiles are used to characterize in detail the binding mechanism to complex I of Q with short and with long isoprenoid tails. A highly stable binding site with two different poses near the chamber exit and a secondary reactive site near the N2 iron-sulfur cluster are found which may lead to an alternative Q redox chemistry and help to explain complex I reactivity. The binding energetics depends mainly on polar interactions of the Q-head and on the counterbalanced hydration of Q-tail isoprenoid units and hydrophobic residues inside the protein chamber. Selectivity upon variation of tail length arises by shifting the hydration balance. This internal hydration mechanism may have implications for binding of amphiphilic molecules to cavities in other membrane proteins. (AU)

Processo FAPESP: 14/21900-2 - Desenvolvimento e aplicação de simulação computacional e análise espectroscópica para o estudo de metaloenzimas e de proteínas flexíveis
Beneficiário:Guilherme Menegon Arantes
Linha de fomento: Auxílio à Pesquisa - Regular
Processo FAPESP: 16/24096-5 - Simulação computacional de metaloenzimas e de proteínas flexíveis
Beneficiário:Guilherme Menegon Arantes
Linha de fomento: Auxílio à Pesquisa - Regular