Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Adaptive rejection sampling with fixed number of nodes

Texto completo
Autor(es):
Martino, L. [1] ; Louzada, F. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math Sci & Comp, BR-05508070 Sao Paulo - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION; v. 48, n. 3, p. 655-665, MAR 16 2019.
Citações Web of Science: 0
Resumo

The adaptive rejection sampling (ARS) algorithm is a universal random generator for drawing samples efficiently from a univariate log-concave target probability density function (pdf). ARS generates independent samples from the target via rejection sampling with high acceptance rates. Indeed, ARS yields a sequence of proposal functions that converge toward the target pdf, so that the probability of accepting a sample approaches one. However, sampling from the proposal pdf becomes more computational demanding each time it is updated. In this work, we propose a novel ARS scheme, called Cheap Adaptive Rejection Sampling (CARS), where the computational effort for drawing from the proposal remains constant, decided in advance by the user. For generating a large number of desired samples, CARS is faster than ARS. (AU)

Processo FAPESP: 14/23160-6 - Esquemas eficientes de Monte Carlo para espaços de alta dimensão e grandes bancos de dados médicos e industriais
Beneficiário:Luca Martino
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado