Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Performance analysis of the multiuser Shalvi-Weinstein algorithm

Texto completo
Autor(es):
Pavan, Flavio R. M. [1] ; Silva, Magno T. M. [1] ; Miranda, Maria D. [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Escola Politecn, Sao Paulo - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Signal Processing; v. 163, p. 153-165, OCT 2019.
Citações Web of Science: 0
Resumo

Performance analyses of blind adaptive equalizers provide valuable insights on their behavior, thus being fundamental in the design process. In the literature, interesting theoretical results to predict the steady-state performance of well-known constant-modulus-based algorithms were obtained under rather idealized equalization conditions. In practice, however, the communication channel is often noisy and perfect equalization can be unachievable. In this paper, we employ a linear regression model, commonly used in supervised adaptive filtering, to consider imperfect equalization conditions in the steady-state analysis of constant-modulus-based algorithms. Due to the nonlinear nature of blind algorithms, this analysis extension is a rather challenging, but rewarding, task. In particular, we apply the extended analysis model to the multiuser Shalvi-Weinstein algorithm, chosen due to its inherent advantages in adaptive blind equalization, namely high convergence rate and numerical robustness. As a result, we obtain a theoretical expression for its excess mean-square error (EMSE) at steady state. Interestingly enough, the resulting EMSE expression allows for the identification of distinct performance degradation causes, such as effects due to high-order statistics of the transmitted constellation, imperfect equalization, and multiuser cross-correlation penalty. In spite of the many assumptions considered throughout the EMSE expression derivation, simulation results validate it under realistic operating conditions. (C) 2019 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 17/20378-9 - Filtros adaptativos e aprendizagem de máquina: aplicações em imagens, comunicações e voz
Beneficiário:Magno Teófilo Madeira da Silva
Modalidade de apoio: Auxílio à Pesquisa - Regular