| Texto completo | |
| Autor(es): |
Número total de Autores: 2
|
| Afiliação do(s) autor(es): | [1] Univ Nacl Sur, Dept Matemat, Buenos Aires, DF - Argentina
[2] Univ Estadual Campinas, Ctr Log Epistemol & Hist Ciencia, Campinas, SP - Brazil
[3] Univ Nacl San Juan, Inst Ciencias Basicas, San Juan - Argentina
Número total de Afiliações: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | STUDIA LOGICA; v. 107, n. 4, p. 591-611, AUG 2019. |
| Citações Web of Science: | 0 |
| Resumo | |
In our paper, monadic modal pseudocomplemented De Morgan algebras (or mmpM) are considered following Halmos' studies on monadic Boolean algebras. Hence, their topological representation theory (Halmos-Priestley's duality) is used successfully. Lattice congruences of an mmpM is characterized and the variety of mmpMs is proven semisimple via topological representation. Furthermore and among other things, the poset of principal congruences is investigated and proven to be a Boolean algebra; therefore, every principal congruence is a Boolean congruence. All these conclusions contrast sharply with known results for monadic De Morgan algebras. Finally, we show that the above results for mmpM are verified for monadic tetravalent modal algebras. (AU) | |
| Processo FAPESP: | 16/21928-0 - Modelos não-determin1sticos para teoria paraconsistente de conjuntos |
| Beneficiário: | Aldo Figallo Orellano |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |