Busca avançada
Ano de início
Entree
Conteúdo relacionado
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

PERIODIC SOLUTIONS AND TORSIONAL INSTABILITY IN A NONLINEAR NONLOCAL PLATE EQUATION

Texto completo
Autor(es):
Bonheure, Denis [1] ; Gazzola, Filippo [2] ; Dos Santos, Ederson Moreira [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Libre Bruxelles, Dept Math, Brussels - Belgium
[2] Politecn Milan, Dipartimento Matemat, I-20133 Milan - Italy
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13566590 Sao Carlos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: SIAM JOURNAL ON MATHEMATICAL ANALYSIS; v. 51, n. 4, p. 3052-3091, 2019.
Citações Web of Science: 3
Resumo

A thin and narrow rectangular plate having the two short edges hinged and the two long edges free is considered. A nonlinear nonlocal evolution equation describing the deformation of the plate is introduced: well-posedness and existence of periodic solutions are proved. The natural phase space is a particular second order Sobolev space that can be orthogonally split into two subspaces containing, respectively, the longitudinal and the torsional movements of the plate. Sufficient conditions for the stability of periodic solutions and of solutions having only a longitudinal component are given. A stability analysis of the so-called prevailing mode is also performed. Some numerical experiments show that instabilities may occur. This plate can be seen as a simplified and qualitative model for the deck of a suspension bridge, which does not take into account the complex interactions between all the components of a real bridge. (AU)

Processo FAPESP: 16/50453-0 - Semilinear and quasilinear elliptic partial differential equations
Beneficiário:Ederson Moreira dos Santos
Modalidade de apoio: Auxílio à Pesquisa - Regular