Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Measuring the Shattering coefficient of Decision Tree models

Texto completo
Autor(es):
de Mello, Rodrigo E. [1] ; Manapragada, Chaitanya [2] ; Bifet, Albert [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Av Trabalhador Saocarlense 400, BR-13560970 Sao Carlos, SP - Brazil
[2] Monash Univ, Wellington Rd, Clayton, Vic 3800 - Australia
[3] Telecom ParisTech, LTCI, Off C201-2, 46 Rue Barrault, F-75634 Paris 13 - France
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: EXPERT SYSTEMS WITH APPLICATIONS; v. 137, p. 443-452, DEC 15 2019.
Citações Web of Science: 0
Resumo

In spite of the relevance of Decision Trees (DTs), there is still a disconnection between their theoretical and practical results while selecting models to address specific learning tasks. A particular criterion is provided by the Shattering coefficient, a growth function formulated in the context of the Statistical Learning Theory (SLT), which measures the complexity of the algorithm bias as sample sizes increase. In attempt to establish the basis for a relative theoretical complexity analysis, this paper introduces a method to compute the Shattering coefficient of DT models using recurrence equations. Next, we assess the bias of models provided by DT algorithms while solving practical problems as well as their overall learning bounds in light of the SLT. As the main contribution, our results support other researchers to decide on the most adequate DT models to tackle specific supervised learning tasks. (C) 2019 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 17/16548-6 - Proposta de uma abordagem com garantias teóricas para a detecção de mudanças de conceito em fluxos de dados
Beneficiário:Rodrigo Fernandes de Mello
Modalidade de apoio: Bolsas no Exterior - Pesquisa