Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Depression biomarkers using non-invasive EEG: A review

Texto completo
Autor(es):
de Aguiar Neto, Fernando Soares [1] ; Garcia Rosa, Joao Luis [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo de Revisão
Fonte: NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS; v. 105, p. 83-93, OCT 2019.
Citações Web of Science: 1
Resumo

Depression is a serious neurological disorder characterized by strong loss of interest, possibly leading to suicide. According to the World Health Organization, more than 300 million people worldwide suffer from this disorder, being the leading cause of disability. The advancements in electroencephalography (EEG) make it a powerful tool for non-invasive studies on neurological disorders including depression. Scientific community has used EEG to better understand the mechanisms behind the disorder and find biomarkers, which are characteristics that can be precisely measured in order to identify or diagnose a disorder. This work presents a systematic mapping of recent studies ranging from 2014 to the end of 2018 which use non-invasive EEG to detect depression biomarkers. Our research has analyzed more than 250 articles and we discuss the findings and promising biomarkers of 42 studies, finding that the depressed brain appear to have a more random network structure, also finding promising features for diagnostic, such as, gamma band and signal complexity; among others which may detect specific depression-related symptoms such as suicidal ideation. (AU)

Processo FAPESP: 16/02555-8 - Desenvolvimento de algoritmos e técnicas computacionais para aplicação em interfaces cérebro-computador
Beneficiário:João Luís Garcia Rosa
Modalidade de apoio: Auxílio à Pesquisa - Regular