| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] UNL, FCT, CMA, P-2829516 Caparica - Portugal
[2] UNL, FCT, Dept Matemat, P-2829516 Caparica - Portugal
[3] Univ Estadual Campinas, IMECC UNICAMP, Dept Appl Math, Rua Sergio Buarque Holanda, BR-13083859 Campinas, SP - Brazil
Número total de Afiliações: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | COMPUTATIONAL OPTIMIZATION AND APPLICATIONS; v. 75, n. 1 OCT 2019. |
| Citações Web of Science: | 0 |
| Resumo | |
We present a new algorithm for solving large-scale unconstrained optimization problems that uses cubic models, matrix-free subspace minimization, and secant-type parameters for defining the cubic terms. We also propose and analyze a specialized trust-region strategy to minimize the cubic model on a properly chosen low-dimensional subspace, which is built at each iteration using the Lanczos process. For the convergence analysis we present, as a general framework, a model trust-region subspace algorithm with variable metric and we establish asymptotic as well as complexity convergence results. Preliminary numerical results, on some test functions and also on the well-known disk packing problem, are presented to illustrate the performance of the proposed scheme when solving large-scale problems. (AU) | |
| Processo FAPESP: | 13/05475-7 - Métodos computacionais de otimização |
| Beneficiário: | Sandra Augusta Santos |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria |
| Beneficiário: | Francisco Louzada Neto |
| Modalidade de apoio: | Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs |