Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks

Texto completo
Autor(es):
Brito Lopes, Fernando [1, 2] ; Magnabosco, Claudio U. [1] ; Passafaro, Tiago L. [3] ; Brunes, Ludmilla C. [4] ; Costa, Marcos F. O. [5] ; Eifert, Eduardo C. [1] ; Narciso, Marcelo G. [5] ; Rosa, Guilherme J. M. [3, 6] ; Lobo, Raysildo B. [7] ; Baldi, Fernando [1]
Número total de Autores: 10
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ UNESP, Dept Anim Sci, BR-14884900 Jaboticabal, SP - Brazil
[2] Embrapa Cerrados, Brasilia, DF - Brazil
[3] Univ Wisconsin, Dept Anim Sci, Madison, WI - USA
[4] Fed Univ Goias UFG, Dept Anim Sci, Goiania, Go - Brazil
[5] Embrapa Rice & Beans, Santo Antonio De Goias - Brazil
[6] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI - USA
[7] Natl Assoc Breeders & Researchers ANCP, Ribeirao Preto - Brazil
Número total de Afiliações: 7
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF ANIMAL BREEDING AND GENETICS; v. 137, n. 5 FEB 2020.
Citações Web of Science: 2
Resumo

The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes C pi in estimating genomic breeding values for meat tenderness in Nellore cattle. The animals were genotyped with the Illumina Bovine HD Bead Chip (HD, 777K from 90 samples) and the GeneSeek Genomic Profiler (GGP Indicus HD, 77K from 485 samples). The quality control for the genotypes was applied on each Chip and comprised removal of SNPs located on non-autosomal chromosomes, with minor allele frequency <5%, deviation from HWE (p < 10(-6)), and with linkage disequilibrium >0.8. The FImpute program was used for genotype imputation. Pedigree-based analyses indicated that meat tenderness is moderately heritable (0.35), indicating that it can be improved by direct selection. Prediction accuracies were very similar across the Bayesian regression models, ranging from 0.20 (Bayes A) to 0.22 (Bayes B) and 0.14 (Bayes C pi) to 0.19 (Bayes A) for the additive and dominance effects, respectively. ANN achieved the highest accuracy (0.33) of genomic prediction of genetic merit. Even though deep neural networks are recognized to deliver more accurate predictions, in our study ANN with one single hidden layer, 105 neurons and rectified linear unit (ReLU) activation function was sufficient to increase the prediction of genetic merit for meat tenderness. These results indicate that an ANN with relatively simple architecture can provide superior genomic predictions for meat tenderness in Nellore cattle. (AU)

Processo FAPESP: 17/03221-9 - Seleção genômica ampla e uso de marcadores moleculares pré-selecionados por meio de redes bayesianas em bovinos de corte utilizando modelos multicaracterísticos
Beneficiário:Fernando Brito Lopes
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado