Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Agents teaching agents: a survey on inter-agent transfer learning

Texto completo
Autor(es):
Da Silva, Felipe Leno [1, 2] ; Warnell, Garrett [3] ; Costa, Anna Helena Reali [1] ; Stone, Peter [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Paulo - Brazil
[2] Univ Texas Austin, Austin, TX 78712 - USA
[3] US Army, Res Lab, Austin, TX - USA
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS; v. 34, n. 1 APR 2020.
Citações Web of Science: 0
Resumo

While recent work in reinforcement learning (RL) has led to agents capable of solving increasingly complex tasks, the issue of high sample complexity is still a major concern. This issue has motivated the development of additional techniques that augment RL methods in an attempt to increase task learning speed. In particular, inter-agent teaching-endowing agents with the ability to respond to instructions from others-has been responsible for many of these developments. RL agents that can leverage instruction from a more competent teacher have been shown to be able to learn tasks significantly faster than agents that cannot take advantage of such instruction. That said, the inter-agent teaching paradigm presents many new challenges due to, among other factors, differences between the agents involved in the teaching interaction. As a result, many inter-agent teaching methods work only in restricted settings and have proven difficult to generalize to new domains or scenarios. In this article, we propose two frameworks that provide a comprehensive view of the challenges associated with inter-agent teaching. We highlight state-of-the-art solutions, open problems, prospective applications, and argue that new research in this area should be developed in the context of the proposed frameworks. (AU)

Processo FAPESP: 15/16310-4 - Transferência de Conhecimento no Aprendizado por Reforço em Sistemas Multiagentes
Beneficiário:Felipe Leno da Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 18/00344-5 - Reusando soluções de tarefas prévias em aprendizado por reforço multiagente
Beneficiário:Felipe Leno da Silva
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado