Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Dynamical evidence for an early giant planet instability

Texto completo
Autor(es):
Ribeiro, Rafael de Sousa [1, 2] ; Morbidelli, Alessandro [2] ; Raymond, Sean N. [3] ; Izidoro, Andre [1] ; Gomes, Rodney [4] ; Vieira Neto, Ernesto [1]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ, UNESP, Campus Guaratingueta, BR-12516410 Guaratingueta, SP - Brazil
[2] Univ Cote Azur, Observ Cote Azur, CNRS, Lab Lagrange, UMR7293, Blvd Observ, F-06304 Nice 4 - France
[3] Univ Bordeaux, Lab Astrophys Bordeaux, CNRS, B18N Geoffroy St Hilaire, F-33615 Pessac - France
[4] Observ Nacl, Rua Gen Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: ICARUS; v. 339, MAR 15 2020.
Citações Web of Science: 0
Resumo

The dynamical structure of the Solar System can be explained by a period of orbital instability experienced by the giant planets. While a late instability was originally proposed to explain the Late Heavy Bombardment, recent work favors an early instability. Here we model the early dynamical evolution of the outer Solar System to self-consistently constrain the most likely timing of the instability. We first simulate the dynamical sculpting of the primordial outer planetesimal disk during the accretion of Uranus and Neptune from migrating planetary embryos during the gas disk phase, and determine the separation between Neptune and the inner edge of the planetesimal disk. We performed simulations with a range of (inward and outward) migration histories for Jupiter. We find that, unless Jupiter migrated inwards by 10 AU or more, the instability almost certainly happened within 100 Myr of the start of Solar System formation. There are two distinct possible instability triggers. The first is an instability that is triggered by the planets themselves, with no appreciable influence from the planetesimal disk. About half of the planetary systems that we consider have a self-triggered instability. Of those, the median instability time is similar to 4Myr. Among self-stable systems - where the planets are locked in a resonant chain that remains stable in the absence of a planetesimal's disk- our self-consistently sculpted planetesimal disks nonetheless trigger a giant planet instability with a median instability time of 37-62 Myr for a reasonable range of migration histories of Jupiter. The simulations that give the latest instability times are those that invoked long-range inward migration of Jupiter from 15 AU or beyond; however these simulations over-excited the inclinations of Kuiper belt objects and are inconsistent with the present-day Solar System. We conclude on dynamical grounds that the giant planet instability is likely to have occurred early in Solar System history. (AU)

Processo FAPESP: 16/24561-0 - A relevância dos pequenos corpos em dinâmica orbital
Beneficiário:Othon Cabo Winter
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/15588-9 - A estabilidade na evolução dinâmica do Sistema Solar via Modelo de Nice.
Beneficiário:Rafael Ribeiro de Sousa
Linha de fomento: Bolsas no Brasil - Doutorado
Processo FAPESP: 16/19556-7 - Formação e Dinâmica Planetária: do Sistema Solar a Exoplanetas
Beneficiário:André Izidoro Ferreira da Costa
Linha de fomento: Bolsas no Brasil - Apoio a Jovens Pesquisadores
Processo FAPESP: 17/09919-8 - Um estudo da autogravidade do disco de planetesimais no Modelo de Nice e a formação dinâmica do cinturão de Kuiper
Beneficiário:Rafael Ribeiro de Sousa
Linha de fomento: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 16/12686-2 - Formação e dinâmica planetária: do Sistema Solar a exoplanetas
Beneficiário:André Izidoro Ferreira da Costa
Linha de fomento: Auxílio à Pesquisa - Apoio a Jovens Pesquisadores