Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Operators on positive semidefinite inner product spaces

Texto completo
Autor(es):
Bovdi, Victor A. [1] ; Klymchuk, Tetiana [2] ; Rybalkina, Tetiana [3] ; Salim, Mohamed A. [1] ; Sergeichuk, Vladimir V. [3]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] United Arab Emirates Univ, Al Ain - U Arab Emirates
[2] Univ Politecn Cataluna, Barcelona - Spain
[3] Inst Math, Tereshchenkivska 3, Kiev - Ukraine
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Linear Algebra and its Applications; v. 596, p. 82-105, JUL 1 2020.
Citações Web of Science: 0
Resumo

Let U be a semiunitary space; i.e., a complex vector space with scalar product given by a positive semidefinite Hermitian form < ., .>. If a linear operator A : U -> U is bounded (i.e., parallel to Au parallel to <= c parallel to u parallel to for some c is an element of R and all u is an element of U), then the subspace U-0 := [u is an element of U vertical bar < u, u > = 0] is invariant, and so A defines the linear operators A(0) : U-0 -> U-0 and A(1) : U/U-0 -> U/U-0. Let A be an indecomposable bounded operator on U such that 0 not equal U-0 not equal U. Let lambda be an eigenvalue of A(0). We prove that the algebraic multiplicity of lambda in A(1) is not less than the geometric multiplicity of A in A(0), and the geometric multiplicity of A in A(1) is not less than the number of Jordan blocks J(t) (lambda) of each fixed size t x t in the Jordan canonical form of A(0). We give canonical forms of selfadjoint and isometric operators on U, and of Hermitian forms on U. For an arbitrary system of semiunitary spaces and linear mappings on/between them, we give an algorithm that reduces their matrices to canonical form. Its special cases are Belitskii's and Littlewood's algorithms for systems of linear operators on vector spaces and unitary spaces, respectively. (C) 2020 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 18/24089-4 - Problemas de classificação para matrizes, espaços de matrizes e tensores
Beneficiário:Vyacheslav Futorny
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional