Recognition of Foot-Ankle Movement Patterns in Lon... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Recognition of Foot-Ankle Movement Patterns in Long-Distance Runners With Different Experience Levels Using Support Vector Machines

Texto completo
Autor(es):
Suda, Eneida Yuri [1] ; Watari, Ricky [1] ; Matias, Alessandra Bento [1] ; Sacco, Isabel C. N. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sch Med, Phys Therapy Speech & Occupat Therapy Dept, Sao Paulo - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY; v. 8, JUN 11 2020.
Citações Web of Science: 0
Resumo

Running practice could generate musculoskeletal adaptations that modify the body mechanics and generate different biomechanical patterns for individuals with distinct levels of experience. Therefore, the aim of this study was to investigate whether foot-ankle kinetic and kinematic patterns can be used to discriminate different levels of experience in running practice of recreational runners using a machine learning approach. Seventy-eight long-distance runners (40.7 +/- 7.0 years) were classified into less experienced (n= 24), moderately experienced (n= 23), or experienced (n= 31) runners using a fuzzy classification system, based on training frequency, volume, competitions and practice time. Three-dimensional kinematics of the foot-ankle and ground reaction forces (GRF) were acquired while the subjects ran on an instrumented treadmill at a self-selected speed (9.5-10.5 km/h). The foot-ankle kinematic and kinetic time series underwent a principal component analysis for data reduction, and combined with the discrete GRF variables to serve as inputs in a support vector machine (SVM), to determine if the groups could be distinguished between them in a one-vs.-all approach. The SVM models successfully classified all experience groups with significant crossvalidated accuracy rates and strong to very strong Matthew's correlation coefficients, based on features from the input data. Overall, foot mechanics was different according to running experience level. The main distinguishing kinematic factors for the less experienced group were a greater dorsiflexion of the first metatarsophalangeal joint and a larger plantarflexion angles between the calcaneus and metatarsals, whereas the experienced runners displayed the opposite pattern for the same joints. As for the moderately experienced runners, although they were successfully classified, they did not present a visually identifiable running pattern, and seem to be an intermediate group between the less and more experienced runners. The results of this study have the potential to assist the development of training programs targeting improvement in performance and rehabilitation protocols for preventing injuries. (AU)

Processo FAPESP: 17/15449-4 - Biomecânica e aspectos funcionais do sistema musculoesquelético de corredores: efeito crônico de exercícios terapêuticos e do envelhecimento
Beneficiário:Eneida Yuri Suda
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 15/14810-0 - Biomecânica e aspectos funcionais do sistema musculoesquelético de corredores: efeito crônico de exercícios terapêuticos e do envelhecimento
Beneficiário:Isabel de Camargo Neves Sacco
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/19291-1 - Biomecânica e aspectos funcionais do sistema musculoesquelético de corredores: efeito crônico de exercícios terapêuticos e do envelhecimento
Beneficiário:Ricky Watari
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 16/17077-4 - Efeitos de um programa de fortalecimento do pé na ocorrência de lesões e na biomecânica do complexo do tornozelo e pé em corredores fundistas: um ensaio clínico controlado e randomizado
Beneficiário:Alessandra Bento Matias
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto