Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Mathematics and Numerics for Balance Partial Differential-Algebraic Equations (PDAEs)

Texto completo
Autor(es):
Lambert, Wanderson [1] ; Alvarez, Amaury [2] ; Ledoino, Ismael [3] ; Tadeu, Duilio [4] ; Marchesin, Dan [5] ; Bruining, Johannes [6]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Alfenas Fed Univ, ICT MG, Rod BR 267, Km 533, Alfenas - Brazil
[2] Univ Fed Rio de Janeiro, Dept Ciencia Comp, Rio De Janeiro - Brazil
[3] Lab Nacl Comp Cient, Av G Vargas 333, Petropolis, RJ - Brazil
[4] UFRRJ, Dept Matemat, BR 465, Km 7, BR-23897000 Seropedica, RJ - Brazil
[5] IMPA, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ - Brazil
[6] Delft Univ Technol, Civil Engn & Geosci, Stevinweg 1, Delft - Netherlands
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF SCIENTIFIC COMPUTING; v. 84, n. 2 JUL 21 2020.
Citações Web of Science: 0
Resumo

We study systems of partial differential-algebraic equations (PDAEs) of first order. Classical solutions of the theory of hyperbolic partial differential equation such as discontinuities (shock and contact discontinuities), rarefactions and diffusive traveling waves are extended for variables living on a surface S, which is defined as solution of a set of algebraic equations. We propose here an alternative formulation to study numerically and theoretically the PDAEs by changing the algebraic conditions into partial differential equations with relaxation source terms (PDREs). The solution of such relaxed systems is proved to tend to the surface S, i.e., to satisfy the algebraic equations for long times. We formulate a unified numerical scheme for systems of PDAEs and PDREs. This scheme is naturally parallelizable and has faster convergence. We do not perform a rigorous analysis about the convergence or accuracy for the method, the evidence of its effectiveness is presented by means of simulations for physical and synthetical problems. (AU)

Processo FAPESP: 19/20991-8 - Estudo de equações diferenciais parciais algébricas com dominância hiperbólica-parabólica com relaxamento: aspectos teóricos, numéricos e aplicações
Beneficiário:Eduardo Cardoso de Abreu
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Brasil