Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Magnetic Pole as Produced by a Point-like Electric Charge Embedded in Constant-Field Background

Texto completo
Autor(es):
Adorno, T. C. [1, 2] ; Gitman, D. M. [3, 1, 4] ; Shabad, A. E. [1, 4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Tomsk State Univ, Fac Phys, Novosobornaya Pl 1, Tomsk 634050 - Russia
[2] Hebei Univ, Coll Phys Sci & Technol, Dept Phys, Wusi Dong Rd 180, Baoding 071002 - Peoples R China
[3] Univ Sao Paulo, Inst Fis, Rua Matao 1371, Cidade Univ, BR-05508090 Sao Paulo - Brazil
[4] Russian Acad Sci, Lebedev Phys Inst, Leninskii Pr 53, Moscow 119991 - Russia
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS; v. 309, n. 1, p. 1-11, MAY 2020.
Citações Web of Science: 0
Resumo

We consider a linear magnetic response to a point electric charge embedded in the background of parallel constant electric and magnetic fields in the framework of nonlinear electrodynamics. We find two types of responses. One is given by a vector potential free of any string singularity. The corresponding magnetic field may be thought of as two magnetic poles of opposite polarity coexisting at one point. The other response is given by a vector potential singular on a half-axis directed along the background fields. Its magnetic field is a magnetic monopole plus a field confined to an infinitely thin solenoid, whose role is the same as that of the Dirac string. The value of the magnetic charge is determined by the electric charge and the background fields and is expressed in terms of derivatives of the nonlinear local Lagrangian. Once the potential is singular, the nonlinear Maxwell equations written for potentials and field intensities are not equivalent. We argue why the preference should be given to potentials. (AU)

Processo FAPESP: 16/03319-6 - Métodos não perturbativos em teoria quântica e em TQC e aplicações deles aos problemas de física atuais
Beneficiário:Dmitri Maximovitch Guitman
Modalidade de apoio: Auxílio à Pesquisa - Temático