| Texto completo | |
| Autor(es): |
Stone-Weiss, Nicholas
[1]
;
Bradtmueller, Henrik
[2]
;
Fortino, Mariagrazia
[3]
;
Bertani, Marco
[3]
;
Youngman, Randall E.
[4]
;
Pedone, Alfonso
[3]
;
Eckert, Hellmut
[5, 2]
;
Goel, Ashutosh
[1]
Número total de Autores: 8
|
| Afiliação do(s) autor(es): | [1] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 - USA
[2] Westfalische Wilhelms Univ Munster, Inst Phys Chem, D-48149 Munster - Germany
[3] Univ Modena & Reggio Emilia, Dept Chem & Geol Sci, I-41125 Modena - Italy
[4] Corning Inc, Sci & Technol Div, Corning, NY 14831 - USA
[5] Univ Sao Paulo, Sao Carlos Inst Phys, BR-13566590 Sao Carlos, SP - Brazil
Número total de Afiliações: 5
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Journal of Physical Chemistry C; v. 124, n. 32, p. 17655-17674, AUG 13 2020. |
| Citações Web of Science: | 0 |
| Resumo | |
Transitioning beyond a trial-and-error based approach for the compositional design of next-generation borosilicate-based bioactive glasses requires a fundamental understanding of the underlying compositional and structural drivers controlling their degradation and ion release in vitro and in vivo. Accordingly, the present work combines magic-angle spinning (MAS) NMR techniques, MD simulations, and DFT calculations based on GIPAW and PAW algorithms, to build a comprehensive model describing the short-to-medium-range structure of potentially bioactive glasses in the Na2O-P2O5-B2O3-SiO2 system over a broad compositional space. P2O5 preferentially tends to attract network modifier species, thus resulting in a repolymerization of the silicate network and a restructuring of the borate component. B-11[P-31] and P-31[B-11] dipolar recoupling experiments suggest that the ability of glasses to incorporate P2O5 without phase separation is related to the formation of P-O-B(IV) linkages integrated into the borosilicate glass network. An analogous approach is used for elucidating the local environments of the Na+ network modifiers. This work, along with future studies aimed at elucidating composition-structure-solubility/bioactivity relationships, will lay the foundation for the development of quantitative structure-property relationship (QSPR) models, thus representing a leap forward in the design of functional borosilicate bioactive glasses with controlled ionic release behavior. (AU) | |
| Processo FAPESP: | 13/07793-6 - CeRTEV - Centro de Pesquisa, Tecnologia e Educação em Materiais Vítreos |
| Beneficiário: | Edgar Dutra Zanotto |
| Modalidade de apoio: | Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs |