| Texto completo | |
| Autor(es): |
Número total de Autores: 4
|
| Afiliação do(s) autor(es): | [1] Univ Padua, I-35122 Padua - Italy
[2] Univ Estadual Campinas, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | IEEE SIGNAL PROCESSING LETTERS; v. 27, p. 1490-1494, 2020. |
| Citações Web of Science: | 0 |
| Resumo | |
The capability of associating an image to its geographical location is a significant concern in journalism and digital forensics. Given the availability of geo-tagged satellite imagery for most of the Earth's surface, retrieving the location of a generic picture can be addressed as a cross-view image matching between aerial and ground views. In this paper, we outline some initial steps toward the development of a fully-unsupervised algorithm for ground-to-aerial image matching, exploiting the view-invariant adjacency relationships of the landmarks appearing in both views. We introduce a graph-based strategy that, given a set of pre-extracted landmarks, localizes the viewpoint of a ground-level 360-degree image within a broad aerial view of the same area, by matching the respective landmark graphs according to a specifically designed likelihood model. (AU) | |
| Processo FAPESP: | 17/12646-3 - Déjà vu: coerência temporal, espacial e de caracterização de dados heterogêneos para análise e interpretação de integridade |
| Beneficiário: | Anderson de Rezende Rocha |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |