Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

An Oldroyd-B solver for vanishingly small values of the viscosity ratio: Application to unsteady free surface flows

Texto completo
Autor(es):
Viezel, C. [1] ; Tome, M. F. [1] ; Pinho, F. T. [2] ; McKee, S. [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Appl Math & Stat, BR-13560970 Sao Paulo, SP - Brazil
[2] Univ Porto, Fac Engn, Dept Mech Engn, CEFT, Rua Dr Roberto Frias S-N, P-4200465 Porto - Portugal
[3] Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark - Scotland
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Non-Newtonian Fluid Mechanics; v. 285, NOV 2020.
Citações Web of Science: 0
Resumo

This work is concerned with time-dependent axisymmetric free surface flows of Oldroyd-B fluids for any value of beta, the ratio of solvent to total viscosities. The Oldroyd-B constitutive equation is dealt with by employing a novel technique to calculate the conformation tensor while an EVSS transformation allows the solution of the momentum equations coupled with the free surface stress conditions: this avoids numerical instabilities that can arise when using small values of beta. The convergence of this new methodology is verified on pipe flow and also by comparing results from the literature for the time-dependent impacting drop problem. This approach is then used to predict the time-dependent free surface flow after a viscoelastic drop impacts a solid surface for beta values in the range {[}0, 1]. The impacting drop problem is investigated for polymer solutions containing a small solvent contribution (beta -> 0) or without any solvent viscosity (beta = 0). In addition, a study of the bouncing drop problem for different values of beta, Weissenberg and Reynolds numbers is undertaken. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs