Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Assisting Barrett's esophagus identification using endoscopic data augmentation based on Generative Adversarial Networks

Texto completo
Autor(es):
de Souza Jr, Luis A. ; Passos, Leandro A. [1] ; Mendel, Robert [2, 3] ; Ebigbo, Alanna [4] ; Probst, Andreas [4] ; Messmann, Helmut [4] ; Palm, Christoph [2, 3] ; Papa, Joao P. [1]
Número total de Autores: 8
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ, Dept Comp, UNESP, Sao Paulo - Brazil
[2] de Souza Jr, Jr., Luis A., Ostbayer TH Regensburg OTH Regensburg, Regensburg Med Image Comp ReMIC, Regensburg - Germany
[3] Ostbayer TH Regensburg OTH Regensburg, Regensburg Ctr Hlth Sci & Technol RCHST, Regensburg - Germany
[4] Univ Hosp Augsburg, Dept Gastroenterol, Augsburg - Germany
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: COMPUTERS IN BIOLOGY AND MEDICINE; v. 126, NOV 2020.
Citações Web of Science: 1
Resumo

Barrett's esophagus figured a swift rise in the number of cases in the past years. Although traditional diagnosis methods offered a vital role in early-stage treatment, they are generally time- and resource-consuming. In this context, computer-aided approaches for automatic diagnosis emerged in the literature since early detection is intrinsically related to remission probabilities. However, they still suffer from drawbacks because of the lack of available data for machine learning purposes, thus implying reduced recognition rates. This work introduces Generative Adversarial Networks to generate high-quality endoscopic images, thereby identifying Barrett's esophagus and adenocarcinoma more precisely. Further, Convolution Neural Networks are used for feature extraction and classification purposes. The proposed approach is validated over two datasets of endoscopic images, with the experiments conducted over the full and patch-split images. The application of Deep Convolutional Generative Adversarial Networks for the data augmentation step and LeNet-5 and AlexNet for the classification step allowed us to validate the proposed methodology over an extensive set of datasets (based on original and augmented sets), reaching results of 90% of accuracy for the patch-based approach and 85% for the image-based approach. Both results are based on augmented datasets and are statistically different from the ones obtained in the original datasets of the same kind. Moreover, the impact of data augmentation was evaluated in the context of image description and classification, and the results obtained using synthetic images outperformed the ones over the original datasets, as well as other recent approaches from the literature. Such results suggest promising insights related to the importance of proper data for the accurate classification concerning computerassisted Barrett's esophagus and adenocarcinoma detection. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia
Processo FAPESP: 19/08605-5 - Diagnóstico do esôfago de Barrett auxiliado por computador utilizando técnicas de aprendizado de máquina
Beneficiário:Luis Antonio de Souza Júnior
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 17/04847-9 - Auxílio ao Diagnóstico Automático do Esôfago de Barrett Utilizando Aprendizado de Máquina
Beneficiário:Luis Antonio de Souza Júnior
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático