Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Semigroups and Moment Lyapunov Exponents

Autor(es):
San Martin, Luiz A. B. [1]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Math, Campinas, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF LIE THEORY; v. 30, n. 2, p. 587-616, 2020.
Citações Web of Science: 0
Resumo

Let G be a noncompact semi-simple Lie group with finite center and mu a probability measure on G. We consider (i) the semigroup S-mu, generated by the support of mu (with the assumption that intS(mu) not equal empty set); (ii) The spectral radii r(lambda) of the operators U-lambda (mu) where U-lambda is a (nonunitary) representation of G induced by a real character and (iii) the moment Lyapunov exponents gamma (lambda, x) of the i.i.d. random product on G defined by mu. The equality r(lambda) = gamma (lambda, x) holds in many cases. We give a necessary and sufficient condition to have S-mu = G in terms of the analyticity of the map lambda bar right arrow r(lambda). The condition is applied to measures obtained by solutions of invariant stochastic differential equations on G yielding a necessary and sufficient condition for the controllability of invariant control systems on G in terms of the largest eigenvalues of second order differential operators. (AU)

Processo FAPESP: 19/10625-4 - Grupos de Lie
Beneficiário:Luiz Antonio Barrera San Martin
Modalidade de apoio: Auxílio à Pesquisa - Publicações científicas - Livros no exterior