Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A New Approach for Pedestrian Density Estimation Using Moving Sensors and Computer Vision Sensing the city

Texto completo
Autor(es):
Tokuda, Eric K. [1] ; Lockerman, Yitzchak [2] ; Ferreira, Gabriel B. A. [1] ; Sorrelgreen, Ethan [3] ; Boyle, David [4] ; Cesar-Jr, Roberto M. ; Silva, Claudio T. [2]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Rua Matao 1010, BR-05508090 Sao Paulo, SP - Brazil
[2] NYU, 2 MetroTech Ctr, New York, NY 11201 - USA
[3] Carmera, 1100 NE Campus Pkwy Suite 200, Seattle, WA 98195 - USA
[4] Carmera, 20 Jay St Suite 312, New York, NY 11201 - USA
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS; v. 6, n. 4 AUG 2020.
Citações Web of Science: 0
Resumo

An understanding of person dynamics is indispensable for numerous urban applications, including the design of transportation networks and planning for business development. Pedestrian counting often requires utilizing manual or technical means to count individuals in each location of interest. However, such methods do not scale to the size of a city and a new approach to fill this gap is here proposed. In this project, we used a large dense dataset of images of New York City along with computer vision techniques to construct a spatio-temporal map of relative person density. Due to the limitations of state-of-the-art computer vision methods, such automatic detection of person is inherently subject to errors. We model these errors as a probabilistic process, for which we provide theoretical analysis and thorough numerical simulations. We demonstrate that, within our assumptions, our methodology can supply a reasonable estimate of person densities and provide theoretical bounds for the resulting error. (AU)

Processo FAPESP: 14/24918-0 - Deep learning fracamente supervisionado para detecção de faces e atributos de pessoas
Beneficiário:Eric Keiji Tokuda
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 15/22308-2 - Representações intermediárias em Ciência Computacional para descoberta de conhecimento
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático