Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Similarity-Driven Edge Bundling: Data-Oriented Clutter Reduction in Graphs Layouts

Texto completo
Autor(es):
Sikansi, Fabio [1] ; da Silva, Renato R. O. [1] ; Cantareira, Gabriel D. [1] ; Etemad, Elham [2] ; Paulovich, Fernando V. [1, 2]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, BR-13566590 Sao Carlos, SP - Brazil
[2] Dalhousie Univ, Fac Comp Sci, Halifax, NS B3H 4R2 - Canada
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: ALGORITHMS; v. 13, n. 11 NOV 2020.
Citações Web of Science: 0
Resumo

Graph visualization has been successfully applied in a wide range of problems and applications. Although different approaches are available to create visual representations, most of them suffer from clutter when faced with many nodes and/or edges. Among the techniques that address this problem, edge bundling has attained relative success in improving node-link layouts by bending and aggregating edges. Despite their success, most approaches perform the bundling based only on visual space information. There is no explicit connection between the produced bundled visual representation and the underlying data (edges or vertices attributes). In this paper, we present a novel edge bundling technique, called Similarity-Driven Edge Bundling (SDEB), to address this issue. Our method creates a similarity hierarchy based on a multilevel partition of the data, grouping edges considering the similarity between nodes to guide the bundling. The novel features introduced by SDEB are explored in different application scenarios, from dynamic graph visualization to multilevel exploration. Our results attest that SDEB produces layouts that consistently follow the similarity relationships found in the graph data, resulting in semantically richer presentations that are less cluttered than the state-of-the-art. (AU)

Processo FAPESP: 14/18665-1 - Visualização de grafos dinâmicos empregando encurvamento de arestas
Beneficiário:Fábio Henrique Gomes Sikansi
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 11/22749-8 - Desafios em visualização exploratória de dados multidimensionais: novos paradigmas, escalabilidade e aplicações
Beneficiário:Luis Gustavo Nonato
Modalidade de apoio: Auxílio à Pesquisa - Temático