Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

BrainWave Nets: Are Sparse Dynamic Models Susceptible to Brain Manipulation Experimentation?

Texto completo
Autor(es):
Nascimento, Diego C. [1, 2] ; Pinto-Orellana, Marco A. [3] ; Leite, Joao P. [4] ; Edwards, Dylan J. [5, 6] ; Louzada, Francisco [1] ; Santos, Taiza E. G. [4]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math Sci & Comp, Sao Carlos - Brazil
[2] Univ Atacama Chile, Dept Matemat, Copiapo - Chile
[3] Oslo Metropolitan Univ, Inst Maskinelektronikk & Kjemi, Oslo - Norway
[4] Univ Sao Paulo, Ribeirao Preto Med Sch, Ribeirao Preto - Brazil
[5] Edith Cowan Univ, Sch Med & Hlth Sci, Joondalup, WA - Australia
[6] Moss Rehabil Res Inst, Elkins Pk, PA - USA
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: FRONTIERS IN SYSTEMS NEUROSCIENCE; v. 14, NOV 26 2020.
Citações Web of Science: 0
Resumo

Sparse time series models have shown promise in estimating contemporaneous and ongoing brain connectivity. This paper was motivated by a neuroscience experiment using EEG signals as the outcome of our established interventional protocol, a new method in neurorehabilitation toward developing a treatment for visual verticality disorder in post-stroke patients. To analyze the {[}complex outcome measure (EEG)] that reflects neural-network functioning and processing in more specific ways regarding traditional analyses, we make a comparison among sparse time series models (classic VAR, GLASSO, TSCGM, and TSCGM-modified with non-linear and iterative optimizations) combined with a graphical approach, such as a Dynamic Chain Graph Model (DCGM). These dynamic graphical models were useful in assessing the role of estimating the brain network structure and describing its causal relationship. In addition, the class of DCGM was able to visualize and compare experimental conditions and brain frequency domains {[}using finite impulse response (FIR) filter]. Moreover, using multilayer networks, the results corroborate with the susceptibility of sparse dynamic models, bypassing the false positives problem in estimation algorithms. We conclude that applying sparse dynamic models to EEG data may be useful for describing intervention-relocated changes in brain connectivity. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs