Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A Speech Quality Classifier based on Tree-CNN Algorithm that Considers Network Degradations

Texto completo
Autor(es):
Vieira, Samuel Terra [1] ; Rosa, Renata Lopes [1] ; Rodriguez, Demostenes Zegarra [1]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Lavras, Dept Comp Sci, Lavras, MG - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS; v. 16, n. 2, p. 180-187, JUN 2020.
Citações Web of Science: 0
Resumo

Many factors can affect the users' quality of experience (QoE) in speech communication services. The impairment factors appear due to physical phenomena that occur in the transmission channel of wireless and wired networks. The monitoring of users' QoE is important for service providers. In this context, a non-intrusive speech quality classifier based on the Tree Convolutional Neural Network (Tree-CNN) is proposed. The Tree-CNN is an adaptive network structure composed of hierarchical CNNs models, and its main advantage is to decrease the training time that is very relevant on speech quality assessment methods. In the training phase of the proposed classifier model, impaired speech signals caused by wired and wireless network degradation are used as input. Also, in the network scenario, different modulation schemes and channel degradation intensities, such as packet loss rate, signal-to-noise ratio, and maximum Doppler shift frequencies are implemented. Experimental results demonstrated that the proposed model achieves significant reduction of training time, reaching 25% of reduction in relation to another implementation based on DRBM. The accuracy reached by the Tree-CNN model is almost 95% for each quality class. Performance assessment results show that the proposed classifier based on the Tree-CNN overcomes both the current standardized algorithm described in ITU-T Rec. P.563 and the speech quality assessment method called ViSQOL. (AU)

Processo FAPESP: 15/24496-0 - Avaliação do serviço das operadoras de comunicações utilizando o índice de qualidade de voz
Beneficiário:Demostenes Zegarra Rodriguez
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/26455-8 - Processamento Audiovisual de Voz por Aprendizagem de Máquina
Beneficiário:Miguel Arjona Ramírez
Modalidade de apoio: Auxílio à Pesquisa - Regular