Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Identification of Gait Events in Healthy Subjects and With Parkinson's Disease Using Inertial Sensors: An Adaptive Unsupervised Learning Approach

Texto completo
Autor(es):
Perez-Ibarra, Juan C. [1, 2] ; Siqueira, Adriano A. G. [2, 3, 4] ; Krebs, Hermano I. [1, 5, 6, 7, 8, 9, 10]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 - USA
[2] Univ Sao Paulo, Dept Mech Engn, BR-13566590 Sao Carlos - Brazil
[3] Univ Sao Paulo, Ctr Adv Studies Rehabil, BR-13566590 Sao Carlos - Brazil
[4] Univ Sao Paulo, Ctr Robot Sao Carlos, BR-13566590 Sao Carlos - Brazil
[5] Univ Maryland, Sch Med, Dept Neurol, Baltimore, MD 21201 - USA
[6] Fujita Hlth Univ, Sch Med, Dept Rehabil Med 1, Toyoake, Aichi 4701192 - Japan
[7] Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear - England
[8] Osaka Univ, Dept Mech Sci & Bioengn, Osaka 5650871 - Japan
[9] Wolfson Sch Mech Elect & Mfg, Loughborough LE11 3TU, Leics - England
[10] Sogang Univ, Coll Engn, Seoul 04107 - South Korea
Número total de Afiliações: 10
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING; v. 28, n. 12, p. 2933-2943, DEC 2020.
Citações Web of Science: 0
Resumo

Automatic identification of gait events is an essential component of the control scheme of assistive robotic devices. Many available techniques suffer limitations for real-time implementations and in guaranteeing high performances when identifying events in subjects with gait impairments. Machine learning algorithms offer a solution by enabling the training of different models to represent the gait patterns of different subjects. Here our aim is twofold: to remove the need for training stages using unsupervised learning, and to modify the parameters according to the changes within a walking trial using adaptive procedures. We developed two adaptive unsupervised algorithms for real-time detection of four gait events, using only signals from two single-IMU foot-mounted wearable devices. We evaluated the algorithms using data collected from five healthy adults and seven subjects with Parkinson's disease (PD) walking overground and on a treadmill. Both algorithms obtained high performance in terms of accuracy (F-1-score >= 0.95 for both groups), and timing agreement using a force-sensitive resistors as reference (mean absolute differences of 66 +/- 53 msec for the healthy group, and 58 +/- 63 msec for the PD group). The proposed algorithmsdemonstrated the potential to learn optimal parameters for a particular participant and for detecting gait eventswithout additional sensors, external labeling, or long training stages. (AU)

Processo FAPESP: 15/50376-2 - Adaptive variable impedance applied to robotic rehabilitation of walking
Beneficiário:Adriano Almeida Gonçalves Siqueira
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/14756-0 - Impedância variável adaptativa aplicada à reabilitação robótica do caminhar
Beneficiário:Adriano Almeida Gonçalves Siqueira
Modalidade de apoio: Auxílio à Pesquisa - Regular