| Texto completo | |
| Autor(es): |
Cardoso, Lislaine Cristina
[1]
;
Camargo, Rubens Figueiredo
[2]
;
Pio dos Santos, Fernando Luiz
[3]
;
Carvalho Dos Santos, Jose Paulo
[4]
Número total de Autores: 4
|
| Afiliação do(s) autor(es): | [1] Great Dourados Fed Univ, Dept Exact & Technol Sci Facet, UFGD, Av Dourados Itahum, BR-79804970 Dourados, MS - Brazil
[2] Sao Paulo State Univ UNESP, Inst Sci FC, Dept Appl Math, Av Engn Luis Edmundo Carrijo Coube 2085, BR-17033360 Bauru, SP - Brazil
[3] Sao Paulo State Univ UNESP, Inst Biosci Botucatu IBB, BR-18618689 Botucatu, SP - Brazil
[4] Alfenas Fed Univ UNIFAL, Dept Math, Av Gabriel Monteiro da Silva, BR-37130001 Alfenas, MG - Brazil
Número total de Afiliações: 4
|
| Tipo de documento: | Artigo Científico |
| Fonte: | CHAOS SOLITONS & FRACTALS; v. 143, FEB 2021. |
| Citações Web of Science: | 2 |
| Resumo | |
This paper describes the dynamics of hepatitis B by a fractional-order model in the Caputo sense. The basic results of the fractional hepatitis B model are presented. Two equilibrium point for the model exists, the disease-free point and the infected point. The local and global stability analysis of the system is given in terms of the basic reproductive number. We execute the global stability analysis using the extended Barbalat's lemma to the fractional-order system. The results show that the extension of Barbalat's Lemma is a robust tool for the asymptotic analysis of the fractional dynamic systems. Moreover, numerical simulations by Nonstandard Finite Difference Schemes show that the solutions converge to an equilibrium point as predicted in the stability analysis. (c) 2021 Elsevier Ltd. All rights reserved. (AU) | |
| Processo FAPESP: | 18/03116-3 - Modelagem Matemática e Computacional da Dinâmica Espacial Bidimensional da Propagação da Dengue |
| Beneficiário: | Fernando Luiz Pio dos Santos |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |