Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Parametric sideband generation in CMOS-compatible oscillators from visible to telecom wavelengths

Texto completo
Autor(es):
Domeneguetti, Renato R. [1] ; Zhao, Yun [2] ; Ji, Xingchen [3, 2] ; Martinelli, Marcelo [1] ; Lipson, Michal [2, 4] ; Gaeta, Alexander L. [2, 4] ; Nussenzveig, Paulo [1]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Fis, POB 66318, BR-05315970 Sao Paulo - Brazil
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 - USA
[3] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 - USA
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 - USA
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: OPTICA; v. 8, n. 3, p. 316-322, MAR 20 2021.
Citações Web of Science: 0
Resumo

We present an approach for generating widely separated first sidebands based solely on the four-wave-mixing process in optical parametric oscillators built on complementary metal-oxide-semiconductor-compatible photonic chips. Using higher-order transverse modes to perform dispersion engineering, we obtain zero-group-velocity dispersion near 796 nm. By pumping the chip in the normal dispersion region, at 795.6 nm, we generate a signal field in the visible band (at 546.2 nm) and the corresponding idler field in the telecom band (at 1465.3 nm), corresponding to a frequency span of approximately 346 THz. We show that the spectral position of signal and idler can be tailored by exploiting a delicate balance between second- and fourth-order dispersion terms. Furthermore, we explicitly demonstrate a change in the parametric oscillation dynamics when moving the pump field from the anomalous to normal dispersion, where the chip ceases producing multiple sidebands adjacent to the pump field and generates widely separated single sidebands. This provides a chip-scale platform for generating single-sideband fields separated by more than one octave, covering the visible and telecom spectral regions. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement (AU)

Processo FAPESP: 16/50468-7 - Nanophotonics for quantum computing and precision measurements
Beneficiário:Paulo Alberto Nussenzveig
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/18834-0 - Explorando informação quântica com átomos, cristais e chips
Beneficiário:Marcelo Martinelli
Modalidade de apoio: Auxílio à Pesquisa - Temático