Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Neural partial differential equations for chaotic systems

Texto completo
Autor(es):
Gelbrecht, Maximilian [1, 2, 3] ; Boers, Niklas [1, 4, 5, 2] ; Kurths, Juergen [1, 3, 6]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Potsdam Inst Climate Impact Res, Potsdam - Germany
[2] Free Univ Berlin, Dept Math & Comp Sci, Berlin - Germany
[3] Humboldt Univ, Phys Dept, Berlin - Germany
[4] Univ Exeter, Global Syst Inst, Exeter, Devon - England
[5] Univ Exeter, Dept Math, Exeter, Devon - England
[6] Lobachevsky State Univ Nizhni Novgorod, Nizhnii Novgorod - Russia
Número total de Afiliações: 6
Tipo de documento: Artigo Científico
Fonte: NEW JOURNAL OF PHYSICS; v. 23, n. 4 APR 2021.
Citações Web of Science: 0
Resumo

Video Abstract Video Abstract: Neural partial differential equations for chaotic systems When predicting complex systems one typically relies on differential equation which can often be incomplete, missing unknown influences or higher order effects. By augmenting the equations with artificial neural networks we can compensate these deficiencies. We show that this can be used to predict paradigmatic, high-dimensional chaotic partial differential equations even when only short and incomplete datasets are available. The forecast horizon for these high dimensional systems is about an order of magnitude larger than the length of the training data. (AU)

Processo FAPESP: 15/50122-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações
Beneficiário:Elbert Einstein Nehrer Macau
Modalidade de apoio: Auxílio à Pesquisa - Temático